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Events before droplet splashing on a solid surface
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A high-velocity (≈1 m s−1) impact between a liquid droplet (≈1 mm) and a solid
surface produces a splash. Classical observations traced the origin of this splash
to a thin sheet of fluid ejected near the impact point, though the fluid mechanical
mechanism leading to the sheet is not known. Mechanisms of sheet formation have
heretofore relied on initial contact of the droplet and the surface. In this paper, we
theoretically and numerically study the events within the time scale of about 1 μs over
which the coupled dynamics between the gas and the droplet becomes important. The
droplet initially tries to contact the substrate by either draining gas out of a thin layer
or compressing it, with the local behaviour described by a self-similar solution of the
governing equations. This similarity solution is not asymptotically consistent: forces
that were initially negligible become relevant and dramatically change the behaviour.
Depending on the radius and impact velocity of the droplet, we show that the solution
is overtaken by initially subdominant physical effects such as the surface tension of the
liquid–gas interface or viscous forces in the liquid. At low impact velocities surface
tension stops the droplet from impacting the surface, whereas at higher velocities
viscous forces become important before surface tension. The ultimate dynamics of
the interface once droplet viscosity cannot be neglected is not yet known.

1. Introduction
At sufficiently high impact velocities, a droplet colliding with a solid surface produces
a splash. The commonality of splashing of droplets belies the fact that there is another
potential solution to the equations of fluid mechanics for the impact of droplets on
a solid surface, that the droplet simply spreads smoothly outwards along the surface.
Several studies (Gopinath & Koch 2002; Bach, Koch & Gopinath 2004; Pan & Law
2007) have studied the approach of a droplet at low to moderate velocities where
surface tension dominates and a plethora of phenomena such as droplet bouncing
are observed. Here we are investigating a different parameter regime, and our goal is
to have a better understanding of the explosive phenomena of splashing.

Why does splashing occur? Bowden & Field (1964), Jenkins & Booker (1960),
Lesser (1981), Field, Dear & Ogren (1989) and Lesser & Field (1983) discovered that
when a splash occurs, a thin fluid sheet is emitted very near the point at which the
droplet contacts the solid surface, with the sheet subsequently breaking down into a
spray of droplets. Figure 1 shows a snapshot of a sheet (Xu, Zhang & Nagel 2005),
which has been ejected into the gas before disintegrating into satellite drops; the sheet
generation occurs much earlier in the impact process. Although known for nearly half
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Figure 1. Sheet ejection and evolution thereof from a splash, taken from Xu et al. (2005),
0.276 ms after initial contact, for an ethanol droplet of 3.4 mm diameter hitting a solid surface
at V0 = 3.74 m s−1.

a century, the fluid mechanical origin of the thin sheet is not yet understood. On the
experimental side, the events surrounding the sheet ejection occur so quickly and at
such small length scales that they have thus far proven to be impossible to measure.
On the theoretical side, to our knowledge, there are not currently even credible
estimates for even the basic length scales and time scales at which the phenomena
leading to sheet ejection occur.

Why are these sheets formed? It is often argued that thin-sheet ejection is inevitable
because of volume conservation: once the droplet impacts, the fluid that would have
traversed below the solid surface must be displaced. But fluid could just as easily be
pushed upwards into the body of the droplet, instead of forming a thin fluid sheet.
Furthermore, it does not give a mechanism for a sheet being propelled into the gas
instead of along the solid. Despite the lack of a mechanistic understanding, empirical
studies have well studied the conditions for sheet formation and splashing. There is a
critical velocity, the ‘splash threshold’, above which splashing occurs; such thresholds
(Levin and Hobbs 1971; Stow & Hadfield 1981; Yarin & Weiss 1995; Bussmann,
Chandra & Mostaghimi 2000; Deegan, Brunet & Eggers 2008; Rein & Delplanque
2008) have long been known to depend on surface tension, density, liquid viscosity and
surface roughness. Surprisingly, recent experiments by Xu et al. (2005) demonstrated a
regime in which the splash threshold also depends on the ambient gas pressure; below
a threshold gas pressure, splashing is suppressed. More insight about the possible role
of the ambient gas is provided by high-speed photography (Thoroddsen et al. 2005),
which gives a detailed picture of the dynamics of an entrapped air bubble between
the liquid and the solid surface but is unable to resolve the earliest stages of the
formation of the air bubble or sheet generation itself.

Current rationale for sheet formation heavily relies on the droplet physically
contacting the solid surface and the associated contact singularity. The contact
singularity arises because of the following simple argument. After a time t , a droplet
of radius R falling at velocity V has penetrated the solid surface a distance V t . The
radius of the wetted area is rwet =

√
2RV t , giving drwet/dt =

√
RV/2t . As t → 0, the

velocity at the edge of the wetted area diverges. This is a real singularity due to
the geometry of a parabolic surface impacting a plane. One popular mechanism for
sheet formation points out that the contact line velocity is much larger than the liquid
sound velocity; this means that the pressure disturbance from the collision of the
droplet with the solid surface is initially pinned to the contact line, so that there can



Events before droplet splashing on a solid surface 165

be no (localized) distortion of the liquid surface. Once drwet/dt slows below the liquid
sound velocity, there is an abrupt increase in the pressure at the liquid–gas interface;
such an impulse could cause the generation of a liquid sheet (Lesser 1981; Rein 1993;
Haller et al. 2003).

The difficulty with this model is that observations show a liquid sheet launched
into the gas (figure 1), whereas the above-mentioned arguments suggest that the sheet
will be propelled along the solid surface. Such a liquid film will experience enormous
frictional forces which strongly resist deformation of the sheet off the solid surface.
Viscous stresses in the surrounding gas are necessarily smaller than those within
the liquid; so it is hard to understand how the viscous response of the gas could
counteract the friction with the solid surface. This issue, coupled with the role of
ambient gas pressure (Xu et al. 2005), led us to the hypothesis that the liquid sheet
might originate because of the interaction of the liquid with the intervening gas layer,
‘before’ the droplet contacts the solid surface (Mandre, Mani & Brenner 2009).

The goal of the current investigation is therefore to study the approach of a droplet
to a solid surface through an intervening gas layer, to search for potential fluid
mechanical mechanisms for sheet generation before contact. We describe the dynamic
state of the drop interface by the curve y = h(x, t), where y is the coordinate normal
to the wall, x being along the wall and t being time. By asymptotically deriving a
reduced mathematical model for h(x, t) from the Navier–Stokes equations and solving
it, we follow the dynamical history of the drop and decide whether the dynamics we
observe is indicative of sheet generation. The ultimate goal is to model the following
possible outcomes of our model.

(i) The drop contacting the surface in finite time: this corresponds to h(x, t) → 0
for some x = x0 at a finite t = t0.

(ii) The interface overturning on itself: mathematically, this implies hx(x, t) → ∞ for
some x = x0 at finite t = t0, while h(x0, t0) remains positive. If the interface overturns,
we are unable to evolve the dynamics any further owing to the limitations of a single-
valued description of the interface. Moreover, the interface becoming multi-valued is
not necessarily an indication of splashing. In experiments, the interface is observed
to overturn on itself both during the splashing and spreading phases.

While neither of these two outcomes is an indication of splashing, sheet generation
is a necessary but not sufficient condition for splashing. In the current paper, we make
a first attempt to describe these dynamics in the presence of the dominant forces, viz.
inertia of the droplet, the surface tension on the interface and the viscosity and the
compressibility of the gas. We demonstrate that a remarkably rich cascade of events
occur well before contact with the solid surface occurs.

Figure 2 shows simulations, described in detail later in the paper, of an ethanol
droplet of a radius 1.7 mm hitting a solid surface with a speed of 3.74 m s−1. On time
scales of ∼0.1 μs and length scales of ∼100 μm, deformations of the liquid interface
occur when the surface is about 1 μm away from the drop. We observe that the
behaviour of the interface depends critically on both impact parameters (droplet
radius and velocity) and fluid and gas properties. Depending on the parameters,
important effects include liquid inertia, liquid viscosity, interfacial surface tension,
gas pressure, gas viscosity, compressibility of the gas, heat transfer in the gas, mass
transfer between the gas and the liquid and the mean free path of the gas. The
present work extends the results of our recent paper (Mandre et al. 2009), which
demonstrated that liquid surface tension prohibits contact with the solid surface,
causing the droplet to skate on a very thin gas layer. We show that depending on
the droplet radius and impact velocity, other physical effects – in particular, viscous
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Figure 2. Snapshots from simulations documenting the deformation of a droplet
(R =1.7 × 10−3 m, μg = 1.8 × 10−5 Pa s, V = 3.74 m s−1, ρ� =780 kg m−3) before contacting
the solid surface. Time is measured relative to the moment of contact if no gaseous
layer is present. Over time scales of ∼ 0.1 μs, (a) shows deformations in the interface of
the droplet occurring on the scales of micrometres. Depending on impact, fluid and gas
parameters, we demonstrate that further phenomena set in when the gas gap is of order
10–100 nm. The build-up of the gas pressure as the minimum gap thickness decreases is
shown in (b).

forces in the liquid – can also stop the similarity solution, leading potentially to other
qualitative behaviours, such as, hypothetically, sheets.

The organization of the paper is as follows. In the next section, we summarize our
mathematical model. We consider the full Navier–Stokes equations for the flows in
the liquid and the intervening gas layer; we then use the initial condition, in which the
droplet is moving towards the solid at high velocity, to argue that the dominant forces
initially are the inertia of the liquid, as well as compressible and viscous forces in
the gas. Section 3 discusses the very initial stages of the droplet’s interaction with the
solid surface, when the liquid interface first deforms because of the pressure in the gas
layer. We demonstrate that depending on both the impact parameters of the droplet
and the properties of the liquid and the gas, the dynamics in the gas layer can be either
compressible or incompressible; experiments (Xu et al. 2005) tend to occur in the
regime in which the gas is initially compressible. Section 4 considers the subsequent
evolution of the liquid interface after it initially deforms. The liquid layer attempts
to contact the solid substrate by either forcing the gas to drain out of the layer or
compressing it, with the local behaviour described by a self-similar solution of the
governing equations. The structure of this similarity solution is derived and compared
with high-resolution numerical simulations. Section 5 demonstrates that the similarity
solution is not asymptotically consistent: the solution causes forces that were initially
deemed negligible to become important; this includes the surface tension of the liquid–
gas interface and viscous forces in the liquid. We report phase diagrams predicting
the thickness of the gas film when each of these forces becomes important, and we
indicate the dominant effect as a function of experimental parameters. Surface tension
dominates at low impact speeds (∼1 m s−1), which we have previously demonstrated
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stops liquid–solid contact Mandre et al. (2009), causing the droplet to skate along a
thin film of gas; at higher impact speeds we show that viscous forces in the liquid
become important before surface tension.

2. Mathematical model
We consider the fluid mechanics of an initially spherical droplet of radius R

approaching a wall with speed V in a gaseous environment at pressure P0. As
the droplet approaches the wall, fluid forces build up in the gas film between the drop
and the wall and cause the droplet to deform. The principal goal of our analysis is to
discover whether these forces are capable of creating a thin fluid sheet. As emphasized
in the Introduction, the number of potentially relevant physical effects is quite large,
and it is not clear a priori which are the most relevant.

To discover the relevant effects we proceed in the following fashion. We first consider
the full equations of motion for both the droplet and the gas layer. Given the initial
state of the droplet, some of the terms in the equation of motion are demonstrably
unimportant. The major simplifications for a typical millimetre-sized droplet with
impact velocity of order 1 m s−1 are (i) slender geometry for the gas film, (ii) the
neglect of viscous forces in the liquid, (iii) the neglect of surface tension forces at the
liquid–gas interface and (iv) the neglect of nonlinear inertia in the liquid. With respect
to viscous forces, the liquid Reynolds number is of order Re = ρ�RV/μ� = 1000, where
μ�, ρ� are the liquid viscosity and density respectively; hence inertial forces in the fluid
initially overwhelm viscous forces, and we therefore neglect viscosity. With respect to
the relative sizes of inertial pressures to pressure variations caused by surface tension,
the relevant dimensionless number is the Weber number We = ρ�V

2/σ , where σ is the
liquid surface tension. For a typical droplet in the splashing regime We ∼ 100, and
hence surface tension is negligible. Finally, the nonlinear effect of inertia is initially
small because before its interaction with the wall, the velocity field inside the droplet
is ‘constant’.

Using these approximations, we solve the equations of motion for the evolution
of the droplet as it impacts the wall. We then monitor the resulting solutions for
the continued validity of the approximations: for each of the major approximations
made, we will see that the approximation breaks down at some time before the droplet
contacts the wall. The precise distance between the droplet and the wall at which
this occurs depends on the parameter regime, as does the neglected force that first
becomes important. For example at low impact velocities we will see that the neglect
of surface tension is the first force to become important, whereas at higher impact
velocities viscous stresses in the liquid are the first. Once our computed solution is
invalidated by the breakdown of an approximation, the continued evolution of the
droplet impact requires a different approach.

It is worth remarking that in addition to the approximations listed above, there
are a number of additional physical effects that we neglect in the present analysis
that might ultimately prove to be important for splashing. These effects include
(i) heat transfer in the gas, which affects the gas equation of state, and (ii) mass
diffusion from the gas into the liquid (we assume in our calculations that the gas
layer cannot be absorbed into the liquid). The neglect of all of these effects is
valid in the regime we are calculating, though these approximations could well
breakdown before contact and hence be important for any putative sheet formation
mechanism.
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2.1. Dynamics in the liquid

The aforementioned approximations imply that in the liquid, we need to study the
incompressible Euler equations. At this point, we make one further approximation,
this time for computational convenience: we model the spherical droplet as a cylinder.
Approximating the dynamics as two-dimensional allows us to employ complex analytic
methods (e.g. see Smith, Li & Wu 2003) in solving for the inviscid dynamics in the
liquid. The central quantitative results of the current paper are not affected by the
two-dimensional approximation: the similarity solution at the heart of the present
paper (dictating when the various neglected fluid forces become important) applies
quantitatively to both cylindrical and spherical impact. The subscripts � and g refer
to the variables in the drop and the gas respectively, and the subscripts x, y, ξ and t

denote differentiation with respect to the respective coordinate. The two-dimensional
Euler equations for the liquid velocity components u = (u�, v�) and liquid pressure p�

are

ρ�ut + ∇p� = −ρ�u · ∇u + μ�∇2u, ∇ · u = 0, (2.1)

where the terms on the right-hand side of the first equation (fluid viscosity and the
nonlinear effect of inertia) will be deemed negligible, as described above. Keeping
account of the terms assumed negligible allows us to later evaluate the validity of our
assumptions. These equations can be rewritten in a computationally tractable form
using complex analytic methods: since ∇2p� ≈ 0, we can define its harmonic conjugate
q� such that the function p� + iq� is holomorphic in the complex plane z = x + iy.
Dropping the subscript for now, Cauchy’s integral formula gives

d

dz
(p� + iq�) =

1

2πi

∫ +∞

−∞

p�ξ (ξ, 0, t) + iq�ξ (ξ, 0, t)

(ξ − z)
dξ. (2.2)

Grouping the imaginary terms and evaluating them at the interface, y = 0, gives us
an expression for the vertical pressure gradient at the liquid interface, in terms of the
horizontal pressure gradient evaluated at the interface. Namely, we have

p�y(x, 0, t) =
1

π
−
∫ +∞

−∞

pξ

(ξ − x)
dξ, (2.3)

where the principal value of the integral is considered on the right-hand side.
Recognizing the right-hand side of (2.3) as the Hilbert transform of p�x and using
(2.1) we arrive at an equation prescribing the acceleration of the interface subject to
a horizontal pressure gradient at the interface,

ρ�htt − H [p�x] = −ρ�(u�v�x + v�v�y) + μ�∇2v� − ρ�(u�hx)t , (2.4)

where we have made use of the kinematic boundary condition ∂h/∂t = v� − uhx and
written in a form such that the terms on the right-hand side will be deemed negligible.

2.2. Dynamics in the gas and at the interface

Now let us consider the dynamics in the gas. When the droplet is close to the wall,
the vertical length scale (set by the distance from the droplet to the wall) is much
smaller than the horizontal length scale (set by the radius of curvature of the droplet).
Mass conservation then suggests that the horizontal flow velocities in the gas are
much larger than the vertical velocities. The gas follows its equations of state and can
exhibit compressible behaviour if the characteristic pressure scale exceeds the ambient
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gas pressure. The compressible lubrication equations are (Taylor & Saffman 1957)

ρg,t + (ρgug)x + (ρgvg)y = 0, (2.5)

−pg,x + μgug,yy = ρg(ug,t + ugug,x + vgug,y) − μgug,xx, (2.6)

where the right-hand side of (2.6) is negligible for the dynamics under consideration.
Since μl 	 μg , and furthermore the scale for horizontal velocity is much larger in the
gas than in the drop, we employ a no-slip boundary condition on the interface,

ug = 0, vg = ht at y = h(x, t) and ug = vg = 0 at y = 0. (2.7)

The leading-order solution to (2.6) is

ug = −pg,x

2μg

y(h − y) + corrections, (2.8)

where the corrections are estimated by substituting the leading-order solution back
into the right-hand side of (2.6). Integrating (2.5) across the gap subject to (2.7) finally
gives us the evolution equation for the gas,

(ρgh)t − 1

12μg

(
ρgh

3pg,x

)
x

= −
[
ρg

(
h5pg,xxx

120μg

+
h4pg,xhxx

48μg

)]
x

−
[
ρ2

g

(
h5pg,xt

120μ2
g

+
h4pg,xht

48μ2
g

)]
x

, (2.9)

where again the terms on the right-hand side are the first-order corrections to the
compressible lubrication theory we employ. We do not use these terms except to later
verify the validity of our approximation. The first term on the right-hand side comes
from the viscous term in (2.6), and the second comes from the acceleration of the
gas. Equations (2.4) and (2.9) are solved subject to the Laplace condition for pressure
p� = pg + σhxx and the equation of state for the gas pg =P0(ρg/ρ0)

γ , where γ is a
constant and models the heat transfer. We choose γ = 1 for an isothermal gas film
and γ = 1.4 for an adiabatic gas film.

We solve this model starting with the initial conditions

h(x, t) = h0 +
x2

2R
, ht (x, t) = −V, p(x, t) = P0, ρ(x, t) = ρ0, (2.10)

where h0 is chosen sufficiently large so that the drop can be assumed to initially move
with constant speed. We have approximated the interface shape to be a parabola,
since we anticipate h0 
 R as is traditionally assumed in the lubrication theory. We
justify our assumptions in the next section.

3. Initial deformation
To gain intuition for the flows that are set up between the liquid droplet and the
gas layer, we first focus on the very initial stages of impact, when the droplet first
deforms from its spherical initial shape, because of its interaction with the underlying
gas layer. Figure 2 shows subsequent snapshots in time of the interfacial and pressure
profiles. The first snapshot is when the droplet first begins to deform away from its
uniform curvature state; a unimodal profile for the pressure develops that signals the
onset of lubrication forces in the gas. Later snapshots show clearly the development
of a dimple at the origin at a height H =H ∗ from the solid surface, which stays
roughly constant.



170 M. Mani, S. Mandre and M. P. Brenner

What sets the thickness H ∗ at which droplet deformation begins? This thickness
is also what sets the height of the layer of gas trapped under the droplet. For the
droplet to deform, the pressure in the gas must be sufficient to decelerate the falling
liquid, locally, from velocity V to rest; that is to say the gas pressure must balance the
inertial pressure in the droplet. Owing to its parabolic shape, the approaching droplet,
in interaction with the gas layer below, sets up a flow over a horizontal length scale
L =

√
RH in the gas. We now carry out a simple scaling analysis of the equations

of motions described above. The left-hand side of the drop equation (2.4) gives the
inertial pressure gradient in the drop,

P�/L ∼ ρ�htt ∼ ρlV/τ, (3.1)

where ht ∼ V is the velocity scale in the system and τ = H/V is the time scale over
which the fluid is brought to rest. When the drop is sufficiently far from the solid
surface the gas density is undisturbed, ρg ≈ ρ0, so that the gas pressure is set by
incompressible viscous drainage. Equation (2.9) then implies that

Pg/L ∼ μRV/LH 2. (3.2)

The liquid interface distorts when the gas pressure is of order the inertial pressure,
Pg ∼ P�. This balance gives an estimate for the height at which the dimple forms and
the pressure in the dimple,

H ∗
Incomp = RSt2/3, P ∗

Incomp =
μV

RSt4/3
, (3.3)

where St = μg/(ρ�V R) is the inverse of the Stokes number. Physically, St is the ratio
of the viscous forces in the gas to the inertial forces in the drop.

The observation that altering the ambient pressure alters the dynamics leads us to
question whether compressible effects are important in the deformation of the droplet
and its subsequent behaviour. Using the threshold values for splashing reported by
Xu et al. (2005) (P0 = 30 kPa) and the incompressible scalings derived above we
can compute the dimple pressure, P ∗

Incomp , as being the value of the pressure at the
dimple’s location when the droplet first deviates from its circular state. We find
P ∗

Incomp = 700 kPa. The pressure required to produce a dimple is significantly greater
than the typical threshold ambient pressure, thereby making it apparent that the
neglected compressible effects must be important. If the pressure in the gas, Pgas , is of
the order of the ambient pressure, then before the drop can deform, the underlying
gas compresses. This transition happens when Pgas ∼ P0 or when

H∗ = R(μV/RP0)
1/2. (3.4)

This critical height (indicated by the subscript star) marks the transition from
incompressible dynamics to a compressible one. Below this critical height viscous
drainage can be neglected, and the gas equation (2.9) simplifies to

(ρgh)t ≈ 0 (3.5)

or ρgh = ρ0H∗, where ρ0 is the initial gas density. Balancing the gas pressure gradient
with the liquid deceleration as before we arrive at

H ∗
comp = RSt2/3ε(2−γ )/(2γ −1) where ε ≡ P0

(Rμ−1V 7ρ4
0 )

1/3
. (3.6)

This dimensionless parameter ε may be interpreted as the ratio of the ambient
pressure (P0) to the pressure that would have built up in the film if the gas film
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Figure 3. (a) Dimensional dimple height H ∗ (in micrometres) as a function of the ambient
pressure P0 (in kilopascals). The open circles correspond to Vimpact = 3.74 m s−1; other data
sets correspond to altered values of impact velocity. The dimple height decreases as impact
velocity is increased and vice versa. (b) Dimensional dimple height H ∗ (in micrometres) as
a function of the impact velocity V (in metres per second). The open circles correspond to
P0 = 30 kPa; other data sets correspond to altered values of ambient air pressure. The dimple
height increases with increasing ambient air pressure, this is apparent for V > 1; however
for low velocities any dependence on air pressure appears to be negligible. Other parameter
values are characteristic of experiments conducted by Xu et al. (2005) (Rdrop = 1.7 × 10−3 m,

μgas =1.8 × 10−5 Pa s, ρdrop =780 kg m−3).

were incompressible (P ∗
Incomp from (3.3)); it determines the importance of compressible

effects in the system compared with lubrication drainage. The height at which the
dimple forms depends on the value of the ambient pressure.

In order to verify the scaling predictions presented above we simulated the above-
given equation for a range of St and ε, tracking the height H = H ∗ at which the
droplet’s interface first deviates from a circular shape. To illustrate the numerical
values of the dimple height in typical experiments, we carried out a series of
simulations, varying the ambient pressure and the impact speed and tracking the
height at which the dimple first forms. Figure 3(a) shows H ∗ in micrometres as a
function of the ambient pressure P0 in kilopascals, for ethanol droplets identical to
those used in Xu et al. (2005). For sufficiently large P0, the dimple height is independent
of P0 in accordance with the incompressible scaling, whereas for sufficiently small P0

the dimple height decreases scaling as P
(2−γ )/(2γ −1)
0 according to (3.6). The value of

pressure that demarcates this behaviour depends on the impact speed. Similarly figure
3(b) shows that the dimple height decreases with velocity as V −2/3 but is independent
of the ambient pressure for impact speeds slower than a critical value. Above this
critical value, the power law changes to V −(16−7γ )/(3(2γ −1)). The critical value of velocity
depends on the ambient pressure.

All these data can be collapsed on to a single master curve by plotting H ∗/RSt2/3

as a function of ε as shown in figure 4 (reproduced from Mandre et al. 2009). We
show results for γ =1 and γ =1.4 in this figure to demonstrate that the small and
large ε asymptotes are in agreement with (3.3) and (3.6). Thus we conclude that ε

captures the transition from an incompressible regime to a compressible one. The
dynamics is incompressible for ε 	 1 and compressible for ε 
 1.

Thoroddsen, Etoh & Takehara (2003) investigated the impact of a droplet on a
liquid surface which can entrap a small amount of air under its centre as the two
liquid surfaces meet, followed by a similar measurement for impact with a dry solid
surface (Thoroddsen et al . 2005) . They measured the thickness of the trapped air film
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for different drop velocities. Although our calculations account for a two-dimensional
planar geometry, while real drops are closer to axisymmetric, the scalings of these
quantities are identical, and only the prefactors of the scaling laws are different. The
values they measured for the impact with a solid wall compare very well with our
calculations; however there is too much variation in their measurement to compare
the scaling behaviour. Since, within our approximation, the dynamics for impact with
a solid surface is identical with the dynamics for impact with a deep liquid pool, and
the latter measurements have much less scatter, we have compared the results of our
calculations with their results. Figure 5 presents their measurements of the air film
thickness and our prediction H ∗

Incomp = RSt2/3, and they agree upto a scaling prefactor.
The agreement in figure 5 provides evidence towards the theory presented here for
liquid–solid impact being pertinent to other situations such as liquid–liquid impact.
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With the scalings derived and confirmed we rescale the governing equations for the
droplet (2.4) and gas (2.9) into dimensionless form. The variables with bars refer to
dimensionless variables and those without the bars to their dimensional counterparts.
Using

h = RSt2/3h̄, x = RSt1/3x̄, p� =
μgV

RSt4/3
p̄�, t =

RSt2/3

V
t̄, pg = P0p̄, ρg = ρ0ρ̄

(3.7)
results in

htt − εH(px) = Re−1∇2v − St1/3(uvx + vvy) + εδH(hxxx), (3.8)

(ρh)t − ε

12
(ρh3px)x = −εSt2/3

[
ρ

(
h5pxxx

120
+

h4hxxpx

48

)]
x

−εRegSt2/3

[
ρ2

(
h5pxt

120
+

h4htpx

48

)]
x

, (3.9)

p = ργ , (3.10)

where Re = ρ�V R/μl is the drop Reynolds number; Reg = ρ0RV/μg is the gas
Reynolds number; δ = σ/RP0 is the ratio of the Laplace pressure to gas pressure; and
we have dropped the bars. For typical drop impacts St ≈ 10−5 , Re ≈ 103 and δ ≈ 10−4;
hence the terms on the right-hand side are negligible, as we expected. Moreover, only
one dimensionless parameters ε defined in (3.6) characterizes the behaviour of the
solution. Hence, we begin by considering the evolution of the interface and any
dependence that it might have on the ambient gas pressure, by considering the limit,
δ → 0, St → 0, RegSt2/3 → 0 and Re−1 → 0 and studying the ε dependence. Thus we
initially focus our attention on the solution of (3.10), coupled with

htt = εH(px), (3.11)

(ρh)t − ε

12
(ρh3px)x = 0. (3.12)

4. Beyond the dimple: the similarity solution
We now consider the evolution of the droplet interface after the formation of a
dimple. Figure 2 (ε = 5 × 10−3) shows that subsequent to dimple formation, the
droplet interface and pressure profiles develop two symmetric kinks that move away
from origin at a constant speed; the location of the interface’s minima coincides with
the maximum of the pressure profile. In an axisymmetric geometry, this suggests a
circular rim moving away from the origin. Accompanying this movement outwards,
the minimum film thickness hmin continues to decrease, and the pressure maximum
pmax increases. The kink is characterized by a new horizontal length scale � which
rapidly decreases as hmin → 0, indicated by increasingly higher curvatures developing
in figure 2. If we neglect forces other than those considered in (3.10), we find that
for every ε, the solution forms a singularity in which the interfacial curvature and
internal pressure diverges in finite time.

Figure 6 shows the evolutions of pmax and � as a function of hmin , for a range
of different values of 10−3 � ε � 102. Both the maximum pressure and � eventually
behave as power laws, pmax ∼ h

−β
min , � ∼ hα

min , where the scaling exponents α, β show a
strong dependence on ε. At large ε, the solution obeys β ≈ 0.5 and α ≈ 1.5. At the low
ε characteristic of experiments the behaviour is much more complicated: for example
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Figure 6. (a) Maximum pressure pmax and (b) curvature length scale � as a function of hmin

shown by the solid lines. The labels denote values of ε. The ambient pressure is subtracted
from pmax for ε = 100. The dashed lines denote various power-law estimates (see the text). The
value ε =5.1 × 10−2 corresponds to figure 1 of Xu et al. (2005). The inset in (b) shows hmin

against t0 − t , where t0 is the time to contact.

at ε = 0.001 the maximum pressure, pmax , does not even increase monotonically with
decreasing hmin . The solution transitions between regimes with distinct dependencies
on ε in a dynamical manner, eventually adopting power laws identical to those
seen in the incompressible regime. Similarly at the ε of the experiment of Xu et al.
(2005) (ε = 0.051) the behaviour is complicated with several apparent regimes. Below,
we present an asymptotic description of the solution that sorts out these different
regimes.

We proceed by constructing a similarity solution for the behaviour in the vicinity
of the leftmost kink. In both regimes, the height and density fields are described by
the self-similar ansatz

h(x, t) = hmin(t)H (η), ρ(x, t) = ρmax (t)R(η), p(x, t) = pmax (t)�(η), (4.1)

where η = (x − x0(t))/�(t) is the similarity coordinate, with x0(t) being the time-
dependent location of the kink. Here ρmax is the time-dependent maximum density.
Before we plug this ansatz into the governing equations we can foresee that time
derivatives of variables such as h(x, t) will have three contributions,

∂

∂t
h(x, t) = ḣminH − η�̇(t)hmin

�(t)
Hη − ẋ0hmin

�
Hη, (4.2)

corresponding to the decrease in the minimum height, a change in time of the
characteristic length scale �(t) and an advective component corresponding to
the movement in the location of the kink away from the origin, respectively. We
numerically evaluate the relative size of these terms in every regime we investigate
and find that the advective term dominates in every case; that is to say it is at least
as large as the other terms, if not larger, as hmin → 0. When this term dominates, we
hypothesize that the kink region is wave-like in character, that is ∂t ≈ U∂x , where we
recognize that the appropriate scale for x is �(t) and that ẋ0(t) = U , a constant for
a given choice of parameters. The self-similar ansatz along with the knowledge of
the wave-like character of the solution can be plugged into the governing equations
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(3.10), leading to the following:

(ẋ0)
2hmin

�2
Hηη = ε

hminρ
γ
max

�
H(Rγ

η ), (4.3)

U

�
ρmaxhmin(RH )η =

ε

12

ρ1+γ
max h3

min

�2
(RH 3Rγ

η )η. (4.4)

Motivated by the scalings derived above for the formation of the dimple, we expect
there to be two broad regimes. If the pressure is dominated by compression of the
gas, then we expect that ρmaxhmin ∼ 1, so that pmax ∼ 1/h

γ
min . In the other regime, the

pressure is dominated by viscous forces. These two regimes occur in taking different
limits of the parameter of ε, with ε 	 1 corresponding to the incompressible/viscous-
dominated regime and ε 
 1 corresponding to the compressible regime.

4.1. Compressible regime

We begin by considering the compressible regime where ε 
 1. Motivated by
the intuition that the density should increase because of the decreasing hmin (i.e.
ρmaxhmin ∼ 1), we use the ansatz

ρh = Ã(ε) + f (ε, t)F (η). (4.5)

Here the first term represents the intuition, whereas the second term is a time-
dependent correction whose form we will determine. We require this second term
to explain the non-monotonicity in the log–log plots of pmax versus hmin . The ε

dependence of the constant Ã is determined by the state of the gas when the
similarity solution sets in: as discussed above, the compressible behaviour sets in at
the critical height H∗ = R(μV/RP0)

1/2; this implies that Ã(ε) = Aε−1/2.
To proceed further, we first focus on the developing kink to the left of the origin in

figure 2. To the right of this kink, the density is high and the gas is compressible: to
its left of the kink the density relaxes to the ambient, and the pressure is determined
by viscous stresses. As mentioned previously the density maximum between these
two regimes moves outwards as it sharpens, and its advection dominates the time
derivatives in the system, that is to say ∂t ≈ U∂x , where U = ẋ0.

The advection approximation and ansatz (4.5) in (3.10) give

−Uf

�
Fη = A

ε1/2

12

Pmaxh2
min

�2

[
H 2

(
1

Hγ

)
η

]
η

, (4.6)

which can be decomposed into a time-dependent scaling and the similarity profile as

U
f

�
∼ ε1/2h2

min

Pmax

�2
, Fη =

A

12

[
H 2

(
1

Hγ

)
η

]
η

. (4.7)

Similarly the drop equation in (3.10) yields

Pmax

�
∼ ε−1U 2 hmin

�2
, Hηη = H

[(
1

Hγ

)
η

]
. (4.8)

Solving the scalings from (4.5), (4.7) and (4.8) simultaneously for pmax , f and � in
terms of hmin leads to

Pmax ∼ ε−γ /2h
−γ
min , � ∼ ε(γ /2)−1U 2h

1+γ
min , f ∼ ε(3/2)−γ U−3h

1−2γ
min . (4.9)
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Surprisingly, this solution demonstrates that f ‘grows’ in time; this implies that
eventually the intuited ρmaxhmin ∼ Aε−1/2 regime will give rise to another regime. The
characteristics of this regime can be found by repeating the analysis but neglecting
the Aε−1/2 term in (4.5), so that ρh = f (ε, t)F (η). All three terms in the time derivative
expression given in (4.2) are numerically observed to be equally dominant in this case
owing to � ∝ t0 − t , where t0 is the time to contact. We then find that

U
ρmaxhmin

�
∼ εh3

minρmax

Pmax

�2
, Pmax ∼ ε−1U 2 hmin

�
. (4.10)

These balances give

Pmax ∼ ε−1U 3/2h
−1/2
min , � ∼ U 1/2h

3/2
min . (4.11)

The similarity analysis thus predicts that there are two distinct regimes of
compressible behaviour: initially, the solution will follow the first regime, in which
ρmaxhmin ∼ 1 and the scaling laws (4.9) are obeyed; we call this regime the ‘sub-
compressible regime’. Below a critical minimum film thickness this behaviour changes
to that given by (4.11), namely the ‘super-compressible regime’. Indeed, evidence
for this transition is shown clearly in figure 6: at the lowest ε, we see in figure
6(a) that pmax ∼ h

−γ
min; near hmin = 0.002 the solution transitions to another behaviour.

At ε = 0.051, evidence is given for pmax ∼ 1/
√

hmin . Similarly, figure 6(b) shows that

� ∼ h
1+γ
min , followed by a transition to � ∼ h

3/2
min .

4.2. Incompressible regime

We now consider the incompressible regime corresponding to large ambient pressures
(ε 	 1). In this regime, the pressure in the gas is largely constant, close to its ambient
value P0. Inhomogeneity in the gas pressure field arises from viscous forces. We
therefore use the ansatz

pg = 1 + ε−1pg,1. (4.12)

Like the super-compressible case, all three terms in the time-derivative expression
in (4.2) are equally important. Substituting the pressure expansion into the scaled
governing equations (2.4) and (2.9) gives us

htt = H[p1,x], ht = (h3p1,x)x (4.13)

which can be further simplified using the wave-like nature of the solutions, leading
to the following scalings for the pressure, Pmax , and length scale, �:

Pmax ∼ U 3/2h
−1/2
min , � ∼ U 1/2h

3/2
min . (4.14)

These scalings are identical to those derived in the super-compressible regime, despite
the different physics. Figure 6 shows that at ε = 100, the maximum pressure, pmax

(defined here as the perturbation of the pressure from the ambient), obeys the law
pmax ∼ 1/

√
hmin , whereas � ∼ h

3/2
min .

4.3. Numerical verification and transitions

The prefactors for the aforementioned similarity solutions can be solved for
explicitly by formulating and solving similarity equations, analogous to (4.8) for
the sub-compressible case. The associated similarity equations are integro-differential
equations, owing to the Hilbert transform in the equation for the flow in the droplet;
although such similarity equations have been solved before (Cohen et al. 1999), we
do not carry out such analysis here. It is our view that an efficient and effective way
to solve the similarity equations is to conduct a careful study of the dynamics of the
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Figure 7. Numerical results from the (a, b) sub-compressible, (c, d ) super-compressible and
(e, f ) incompressible regimes. (a, c, e) Subsequent snapshots in time of the pressure profile
developing to the right of the origin. The maximum of the pressure profile can be seen to
be diverging, while the characteristic length scale is tending to zero. (b, d, f ) Scaled plot of
the profiles from the left panel. The pressures are scaled by the predicted scaling and are
expressed as a function of η = (X − X0(T ))/(�(T )) instead of X. A single universal profile P (η)
can be seen giving further evidence to the self-similar hypothesis and scalings predicted. The
predictions for the various similarity laws are given in (4.9) for the top panel, (4.11) for the
middle panel and (4.14) for the bottom panel.

underlying nonlinear partial differential equations, as we have done here. In view of
the slow decay of the Hilbert transform kernel we ensured the accuracy of our results
by changing the size of the domain integrated over, noting no significant change in
the behaviour described above. Furthermore, the collapsed profiles in figure 7 are
verification of the localization of the similarity equations. Nonetheless, we do not
have a putative mathematical understanding of similarity equations, the matching to
the outer solutions and the effect of the non-local term on the localization of the
solution. This matching might be especially tricky in the compressible regime in which
the outer solutions to the right and left of the kink are very different.

Figures 7 and 8 are verification of the scalings laws for the three aforementioned
similarity regimes. Figure 7 demonstrates the collapse of the pressure profiles for
different times on to a single universal profile, depicting the validity of the self-
similarity. Similarly, figure 8 show the collapse of Pmax and � as a function of hmin for
various ε, indicating that the leading-order variation in ε is captured by the similarity
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Figure 8. Numerical results from the (a, b) sub-compressible (γ = 1.4, ε ∈ [1 × 10−3, 1 ×
10−6]), (c, d ) super-compressible (γ = 2, ε ∈ [1 × 10−2, 1 × 10−9]) and (e, f ) incompressible
(ε ∈ [1 × 10, 1 × 104]) regimes. (a, c, e) Log–log plot of the characteristic horizontal length
scale, �, divided by its predicted scaling versus the minimum height, hmin , for different ε. (b,
d, f ) Log–log plot of the maximum pressure, pmax , divided by its predicted scaling versus the
minimum height, hmin , for different ε. For both dimensionless quantities the curves asymptote
to a universal constant, indicating a verification of a universal self-similar law for both � and
pmax .

solution. Moreover, the prefactors for the scaling laws (4.9), (4.11) and (4.14) can be
read off figure 8. The corresponding similarity scalings with prefactors read

sub-compressible: Pmax = 2.0ε−γ /2h
−γ
min, � = 1.0ε(γ /2)−1U 2h

1+γ
min ; (4.15)

super-compressible: Pmax = 1.4ε−1U 3/2h
−1/2
min , � = 1.0U 1/2h

3/2
min; (4.16)

incompressible: Pmax = P0 + 1.2ε−1U 3/2h
−1/2
min , � = 0.8U 1/2h

3/2
min . (4.17)

Armed with the scaling laws and the prefactors, we are now in a position to
theoretically address the transition between these similarity solutions. The transition
between the sub-compressible and super-compressible regimes is predicted to occur
when Aε−1/2 ∼ f . We have tested this in a series of simulations with γ =1.4: there,
the transition should occur when h

sub-super
min ∼ ε0.6 and P sub-super

max ∼ ε−1.6 . Figure 9
verifies these predicted crossovers from the sub-compressible regime over to the
super-compressible regime and compares the observed scaling laws with the ones
predicted by the analysis. Figure 10 shows the maximum pressure divided by its
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Figure 10. Numerical results of several super-compressible simulations and two
sub-compressible solutions that transition and asymptote to the same constant as the
‘pure’ super-compressible solutions that start out in the super-compressible regime. The two
sub-compressible solutions stand out, since the behaviour prior to transition is very different
from all the other solutions in the figure.

scaling in the super-compressible regime to demonstrate the ultimate transition. The
thinner curves are data from numerical simulations of solutions that enter the super-
compressible regime directly. The two thick curves that stand out are results from
simulations of solutions that initially start out in the sub-compressible regime, which
then transition into the super-compressible regime. The plot illustrates that not only
do the solutions transition to the super-compressible regime, depicted by the thick
curves asymptoting to a constant, but they asymptote to the same constant as the
solutions that start out in the super-compressible regime.

Once the transition to the ultimate asymptotic (super-compressible) regime occurs,
the solutions lose all memory of the initial conditions from where they come.
Figure 10 shows numerical simulations of a variety of different situations reaching
the super-compressible regime, with 10−9 � ε � 10−2 and different values of γ .
In the figure, the thin curves represent solutions that enter the super-compressible
regime directly, whereas the thick curves represent two simulations that start in
the sub-compressible regime and then transition into the super-compressible regime.
Strikingly, all of the solutions asymptote to the identical universal law, namely

Pmax =
1.4

ε
√

hmin

, � = h
3/2
min, (4.18)
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where the prefactor 1.4 and unity in the expression for the pressure maximum and
critical length scale, respectively, are apparent universal constants.

5. The breakdown of the similarity solutions
These similarity solutions appear to support the idea that liquid–solid contact
occurs, entraining a gaseous bubble underneath. However, the self-consistency of
the argument requires that we return and check whether the series of approximations
that we made at the beginning of the current paper remain valid uniformly in time.
A quick examination reveals that it is impossible for the solution to be uniformly
consistent: independent of the regime (ε) every solution eventually obeys � ∼ h

3/2
min;

so the interfacial slopes diverge near contact. But implicit in our derivation of the
equation for the gas was the lubrication theory, which requires that slopes remain
small for all time. Additionally, we have neglected a number of physical effects, whose
neglect may be invalid as hmin → 0.

Here we use the universal scaling laws derived in the last section to quantitatively
track the value of hmin the different effects can no longer be neglected and may cause
a breakdown of the similarity solution. In our previous paper (Mandre et al. 2009) we
studied the role of surface tension, which prohibits contact from occurring. Here we
also include the departure from the lubrication theory, viscous effects in the liquid and
nonlinear inertia in the liquid. For each effect, we present contour plots for the critical
height at which this effect becomes important as a function of P0, V , R. Underlying
our analysis is a hypothesis that the parameter space can be divided into regions in
which particular physical effects cause a breakdown of the similarity solution and
result in a multitude of qualitatively different dynamics.

5.1. Departure from lubrication theory

Going back to (3.9), in the super-compressible regime the terms on the left-hand side
scale as ρmaxhmin/� = ρmaxh

−1/2
min . On the other hand, the first term on the right-hand

side originating from μgug,xx in (2.6) scales as εSt2/3ρmaxh5
minpmax/�3 = St2/3ρmaxh

−3/2
min .

Consequently as hmin → 0, separation of scales in the lubrication theory becomes
invalid, and the μgug,xx term may become as large as the μgug,yy term. This happens

when hmin ∼ O(St2/3) or dimensionally when hmin ∼ O(RSt4/3). This dimensional
height, at which lubrication theory breaks down, is shown in figure 11(a) as a
function of the drop radius and impact velocity. The other term on the right-hand
side of (3.9) is asymptotically consistent.

5.2. Surface tension

The terms on the left-hand side of the drop equation (3.8) scale like hmin/�
2 = h−2

min .

The surface tension term εδH(hxxx) scales as εδh
−7/2
min and can no longer be neglected

for hmin ∼ O((εδ)2/3). Dimensionally, this amounts to a minimum film thickness of
hmin ∼ O(RSt8/9We−2/3), which is plotted in figure 11(b) as a function of the drop
radius and impact velocity. Note that the film thickness at which surface tension sets
in or becomes important is independent of the ambient pressure P0.

5.3. Viscous effect

The first term on the right-hand side of (3.8) scales as Re−1hmin/�
3 = Re−1h

−7/2
min . A

breakdown ensues when Re−1h
−3/2
min ∼ O(1) or when hmin ∼ O(Re−2/3). Dimensionally,

hmin =RSt2/3Re−2/3. This dimensional height is plotted in figure 11(c). Note that
the film thickness at which viscous forces becomes important is independent of the
ambient pressure P0.
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Figure 11. Contour plot (in nanometres) of the height at which the neglect of (a) corrections
to lubrication theory or nonlinear-inertial effects, (b) surface tension or (c) viscous effects in the
liquid becomes invalid. The thick black curve partitions parameter space into an incompressible
region to its left and a compressible one to its right.

5.4. Nonlinear inertia

The second term on the right-hand side of (3.8) scales as St1/3h2
min/�

3 = St1/3h
−5/2
min .

Breakdown occurs when hmin ∼ O(St2/3) or dimensionally when hmin ∼ O(RSt4/3). This
is identical to the scale obtained for the breakdown of lubrication theory, and the
height at which this effect becomes important is shown in figure 11(a). Note that
the film thickness at which nonlinear inertia becomes important is independent of the
ambient pressure P0.

5.5. Non-continuum effect

Since the film thicknesses in figure 11 are on the scale of nanometres, it is worthwhile
to ask if the continuum approximation breaks down for the gas in the film. It is
not obvious whether such a breakdown occurs, since the gas density is also very
large when the film thickness is small. An appropriate quantitative way to analyse
this is to include the leading-order non-continuum effect in the dynamics and find
the criterion for that effect to become important. The leading-order non-continuum
effects is that the gas slips along the boundaries according to Maxwell’s slip condition
(see Gopinath & Koch 2002), thus modifying the lubrication flux and adding a
term (ρh2λpx)x/2μ to the right-hand side of (2.9), where λ is proportional to the
mean free path of the gas. The mean free path depends on the density as λρ = λ0ρ0.
This term is initially small; moreover, it does not change its magnitude relative to the
dominant terms in (2.9) for the sub-compressible similarity solution. Once the solution
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Figure 12. Phase diagram delineating which effect stops the similarity solution. In the shaded
region, surface tension becomes important first; we have already shown (Mandre et al. 2009)
that this causes the droplet to not impact the solid surface, skating along a thin gas layer. At
high enough impact velocities, viscous forces in the liquid become important before surface
tension (white region). What happens to the droplet in this region is under investigation.

transitions to the super-compressible solution, drainage is facilitated by the slip along
the boundaries, and this additional drainage becomes important when dimensionally
hmin ∼ RSt2/3(λ0/R)2γ /(2γ −1). Since λ0 ∼ 100 nm, this estimate gives hmin < 0.1 nm in the
best-case scenario γ = 1. Since the ultimate dynamics are independent of the ambient
pressure, the conclusion holds even in reduced atmospheres. We have verified this by
including the Maxwell slip term in our model and computing the solutions numerically.

6. Discussion and conclusion
The current paper has studied the dynamics of a droplet impacting a solid surface

through many different stages, all occurring before surface impact occurs. The air
layer causes deformation of the liquid surface, followed by the formation of a sharp
kink on the surface which propagates and attempts to contact the solid surface.
However, before contact, other physical effects which change the dynamics set in. We
have used the universal similarity solution for the solution of the kink to derive the
critical height at which three important critical effects, namely surface tension, viscous
forces in the liquid and nonlinear inertia in the liquid, set in. We have demonstrated
that each of these effects sets in at a critical height which depends on the droplet
radius R and impact velocity V but not the ambient pressure P0. As to date, the
authors are unaware of any visualization of the droplet interface as it approaches
a substrate (solid or liquid), such an experiment would provide an ideal test for the
various hypotheses made here.

Figure 12 summarizes our results in a phase diagram of droplet velocity and
radius. We have coloured the phase diagram according to the physical effect that
sets in at the largest gap thickness. At low impact velocities, surface tension becomes
important first (shaded grey), whereas at higher velocities viscous forces in the liquid
dominate (shaded white). Our previous paper has demonstrated that when surface
tension becomes important, contact with the liquid surface is completely prohibited,
and instead the droplet skates along a thin air layer of thickness 2.54RSt8/9We−2/3.
Here we see that this result is self-consistent at velocities below ∼1 m s−1, with the
precise value depending on droplet radius. Above the threshold depicted in figure 12,
viscous forces in the liquid become important first and will modify the self-similar
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dynamics before surface tension forces. The resulting dynamics of the liquid interface
in this regime is not yet known. It is noteworthy that the only role we have uncovered
for the gas pressure P0 is its effect on the dimple height; neither the surface tension
transition nor the viscous transition depends on P0, and hence neither are sufficient
to explain the pressure dependence observed in Xu et al. (2005). There are a number
of other physical effects that might also become important, including (i) heat transfer
in the gas, which affects the gas equation of state, and (ii) mass diffusion from the
gas into the liquid. Whether any of these effects conspires with surface tension and
viscous forces in the liquid to give a mechanism of sheet formation remains to be
seen.

This research was supported by the National Science Foundation through the
Division of Mathematical Sciences and the Harvard MRSEC.

Appendix. Numerical method
The numerical method of choice to solve these equations is dictated by the stiffness

of (3.11) and (3.12). In the spirit of finite-difference methods, we define a discrete
spatial grid defined by xj = x0 + jΔx, where x0 is the x-coordinate of the first grid
point and Δx is a constant grid spacing. The solution is approximated only at these
grid points and at times t0, t1, t2, . . . , tn, and we use the notation φn

j = φ(xj , tn) for
arbitrary functions φ. For stability, an explicit finite-difference method for the drop
equation (3.11) requires a time step Δt ∝ Δx3/2 for a given Δx. Similarly, for the
compressible lubrication equation (3.12) the condition is Δt ∝ Δx2. Anticipating
a small spatial scale to develop as the solution evolves, a fine grid is required to
resolve it. This imposes a very strict constraint on the allowable time step and makes
the computation prohibitively slow. Instead of explicit methods, we opt for semi-
implicit schemes to manage numerical instabilities, allowing us to take arbitrary time
steps. In particular, we substitute the equation of state (3.10) in the compressible
lubrication equation (3.12) and at each time step solve for the change in the gas
density Δρj = ρn+1

j − ρn
j , given the change Δhj =hn+1

j − hn
j in the film thickness. The

lubrication equations is linearized for small Δρj to obtain a sparse linear system of
equations,

Δρj

[
hn+1

j + (γ + 1)ρnγ
j (Rj+1/2 + Rj−1/2)

]
− Δρj−1(γ + 1)ρnγ

j−1Rj−1/2

− Δρj+1(γ + 1)ρnγ

j+1Rj+1/2 = ρn
j Δhj + 2Rj+1/2

[
ρ

n(γ+1)
j+1 − ρ

n(γ+1)
j

]
− 2Rj−1/2

[
ρ

n(γ+1)
j − ρ

n(γ+1)
j−1

]
, (A 1)

where

Rj+1/2 =
εγΔt

12(γ + 1)Δx2

(
1

hn3
j+1

+
1

hn3
j

)−1

. (A 2)

At the boundary points Δρj is set to zero. These equations can be solved for Δρj in
O(N) computation per time step.

Once Δρj is found, it is used to compute pn+1
j to be substituted in the Hilbert

transform in (3.11) to advance h to the next time step. Although the Hilbert transform
is linear, applying a semi-implicit method based on finite differences is not optimal
because the linear system generated to solve for Δhj is not sparse and would require
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at least O(N2) computation. Instead, transforming to Fourier space as

hn
j =

x2

2
+

N/2−1∑
k=−N/2

ĥn
k exp

(
2πikxj

L

)
, hn

t,j
=

N/2−1∑
k=−N/2

v̂n
k exp

(
2πikxj

L

)
, (A 3)

where L is the length of the domain, allows for the stiffness resulting from the surface
tension term to be integrated analytically. The Fourier coefficients satisfy

ĥn+1
k = ĥn

k cos ωkΔt +
v̂n

k

ωk

sinωkΔt + p̂n
k

Δt2

2
, k �= 0,

v̂n+1
k = −ĥn

kωk sinωkΔt + v̂n
k cosωkΔt + p̂n

kΔt, k �= 0,

ĥn+1
0 = ĥn

0 + v̂n
0Δt + p̂n

0

Δt2

2
, v̂n+1

0 = v̂n
0 + p̂n

0Δt,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 4)

where p̂n
k denote the discrete Fourier transform of pn

j as

pn
j =

N/2−1∑
k=−N/2

p̂n
g,k exp

(
2πikxj

L

)
(A 5)

denotes the Fourier transform of the gas pressure and ωk =
√

8π3σk3/ρlL3. The
forward and inverse Fourier transforms can be carried out in O(N log N) computation
using fast Fourier transform algorithms. Owing to the Fourier expansion, the interface
perturbations from a parabolic shape are strictly speaking periodic. However, we chose
a large enough simulation domain to ensure that the perturbation decayed towards
the boundary, and this periodicity does not affect the solution, as verified by doubling
the domain length.

We implemented an adaptive time-stepping strategy to traverse any fast transients
without losing accuracy. The error in each time step was estimated from a Richardson
extrapolation, i.e. by comparing the solution obtained by a time step Δt with that
obtained by taking two time steps of duration Δt/2 each. If the maximum value of
the relative error was larger than a preset tolerance (usually set to 10−3), the time
step was reduced by a factor of 2.

The spatial grid was also adapted depending on the current spatial scale of the
solution. The spatial scale was estimated as the distance between two landmarks of the
solution; examples of the landmarks we used are the minimum of h, the maximum of
p and the extrema of ht . The choice of landmarks depended on the particular solution
under consideration. The number of points in the grid were doubled if the distance
between the chosen landmarks spanned less than a preset number (usually 40) of grid
points. The refined solution is found by interpolating the unrefined solution using
cubic splines.

Each simulation is started with the initial condition

h0
j = H0 +

x2
j

2
, htj = −1, ρj = 0, (A 6)

for sufficiently large H0. The particular H0 we used depended on the parameters, and
the solution was accepted only if doubling the value of H0 yielded the same solution
to three significant digits.
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